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ABSTRACT 
 
The performance of engineering activities has significant impacts on the successfulness of 
implementing industrial construction projects. Improving engineering performance can lead to 
better project outcomes. Previous studies on engineering performance improvement have either 
focused on the use of certain techniques or products, or looked at specific engineering processes 
or areas. There has been a lack of a systematic and analytical approach that improves 
engineering performance based on the understanding of the relationships between engineering 
inputs and project outcomes. The paper proposes a generic model, which integrates genetic 
algorithms with artificial neural networks, for modeling engineering performance measurement 
and improvement in industrial construction projects. Due to their robust and efficient search 
ability in complex situations, genetic algorithms are employed to search for solutions to 
improving engineering performance with the searching criteria, fitness function, being the neural 
networks that establish the relationships between engineering inputs and project outputs. 
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1. INTRODUCTION 
 
Industrial construction projects have been 
experiencing unsuccessful implementation of 
projects for a long time. An industry survey 
(Post 1998) reported that one-third of the 
projects surveyed was over budget and nearly 
half was delivered late. The development of an 
industrial facility spans over five stages: pre-
project planning, detailed design, procurement, 
construction, and start-up and commissioning 
(CII 1997). Early researches addressed the 
impact of engineering performance on the 
overall outputs of a project. For example, design 
errors, changes and omissions could constitute 
approximately 10% of the total installed costs of 
a project while construction mistakes account 

for only about 2% (Davis et al 1989). 25% of the 
facility owners surveyed by Post (1998) ranked 
detailed design as the weak link in the process of 
facility development. 
 
The Research Team 156 (RT-156) of 
Construction Industry Institute (CII) studied the 
industrial project data collected by CII 
Benchmarking and Metrics Committee. The 
study reported that the detailed design phase was 
a prime source of project schedule delays and 
that about half of the project scope and 
development changes were initiated during the 
detailed design phase. The report also pointed 
out that design errors were the utmost source of 
field rework and that design-related field rework 
surpassed that initiated by both owner and 
constructor (Georgy et al 2000). 
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Since industrial projects involve huge amount of 
investment, even a small percentage of cost 
overrun or schedule delay will result in serious 
economic loss. Therefore, there is an urgent 
need to improve project outputs through 
improving engineering performance. This 
research aims at searching for approaches to 
improving engineering performance in industrial 
construction projects through integrating genetic 
algorithms with artificial neural networks. 
Engineering refers to the detailed design phase 
of an industrial project. 
 
2. PREVIOUS STUDIES ON 
ENGINEERING PERFORMANCE 
 
Engineering is a systematic process with inputs 
and outputs. Engineering performance 
measurement deals with the output side. The 
ability to successfully perform the engineering 
and design activities on an industrial 
construction project depends on various project 
input variables (i.e., project attributes and 
conditions), which are essential in driving its 
engineering performance. There was a lack of 
analytical scheme that can approximate the 
cause-effect relationship between engineering 
inputs and outputs until the research work of 
Georgy (2000) and CII RT-156, which is part of 
the foundation of this research study. 
 
CII RT-156 identified a total of 25 engineering 
input variables and ten engineering performance 
measures, as shown in Table 1 and Table 2 
respectively. A neural-fuzzy system was 
developed for establishing the relationships 
between engineering inputs and engineering 
performance measures. A multi-attribute utility 
function was used to aggregate the performance 
measures into a composite index to indicate the 
engineering performance level (Chang et al 
2001 and Georgy 2000). 
 
Researchers in the past tried various approaches 
to improve engineering performance, but most 
of their approaches are qualitative in nature and 
have certain limitations. The limitations come 
from the fact that some approaches promote the 
use of a specific technique or product and some 
look at specific areas of engineering and design 

activities (Armentrout 1986, Atkin and Gill 
1986, Breen and Kontny 1987, Choi and Ibbs 
1990, Ginn and Barlog 1993). There is a lack of 
a systematic and analytical approach that looks 
at improving engineering performance based on 
the understanding of the relationship between 
engineering performance and its driving factors. 
 
3. THEORIES 
 
3.1 Artificial Neural Networks (ANNs) 
 
ANNs are an information processing technology 
that simulates the human brain and nerve 
system. Their basic element is also called neuron 
(or node). All neurons are organized in layered 
structure and connected with weighted links. 
There is always an input layer where the initial 
stimulus happens, and an output layer where the 
final reaction of the system is shot out. ANNs' 
two major functions are learning and recall. 
Learning is the process of adapting the 
connection weights in an ANN to produce the 
desired outputs in response to inputs. Recall is 
the process of producing outputs in accordance 
to specific inputs using the knowledge obtained 
through learning (Tsoukalas and Uhrig, 1997). 
 
3.2 Genetic Algorithms (GAs) 
 
GAs are robust general-purpose search program 
based on the mechanism of natural selection and 
natural genetics (Holland 1972). Genes and 
chromosomes are the fundamental elements in 
GAs. A chromosome is a string of genes. In a 
real problem, genes are the variables that are 
considered influential in controlling the process 
being optimized, and a chromosome is a solution 
to the problem. GAs search for the optimal 
solution from populations of chromosomes. In 
this research, the genes are the 25 input variables 
in Table 1. A chromosome is a set of the 25 
input variables. There is an objective function 
(preferably called fitness function) in GAs. The 
search process seeks the maximum or minimum 
value of the fitness function. 
 
4. MODELS 
 
The fundamental approach of the research is to 
employ GAs to search for the engineering 
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performance inputs that lead to optimal 
engineering performance. The ANN system 
shown in Figure 1 serves as a complicated 
fitness function. Two models were built. 
 Engineering Performance Index Model (EPI 

Model). 
 GA-ANN-Integrated Search Model (GA-

ANN Model).  
 
4.1 EPI Model 
 
EPI model is in essence the framework of CII 
RT-156. As illustrated in Figure 1 and Figure 2, 
EPI model is comprised of two parts. The first 
part is 10 neural networks that establish the 
relationships between the 25 engineering inputs 
and the 10 engineering performance measures 
respectively. The second part is a multiple 
attribute utility function that takes the outputs 
from the 10 neural networks in the first part as 
its inputs and translates them into a composite 
utility score, engineering performance index. 
 
The 10 neural networks, after being trained, can 
predict performance measures for given 
engineering inputs. The 10 engineering 
performance measures depict, from different 
perspectives, the quality of outputs of 
engineering activities. However, if it is required 
to evaluate a project or to compare it with 
another one, it will be hard to make the 
judgment when 10 varying measures are 
presented. Therefore, there comes the need for a 
single composite measure that indicates the 
overall level of engineering performance and 
contains the information embedded in the 10 
measures. Through multiple attribute utility 
function, an engineering performance index is 
defined on the scale of [0, 1] with 0 depicting 
the poorest engineering performance and 1 the 
best performance.  
 
Thus, through the trained neural networks, if 
given engineering inputs, EPI model can make 
prediction on engineering performance through 
both a group of 10 different measures and an 
overall engineering performance index. The set 
of 10 measures gives a comprehensive view of 
engineering performance. The engineering 
performance index will be used as fitness 
function value in GA-ANN model. 

 
4.2 GA-ANN Model 
 
GA-ANN model, as shown in Figure 3, depicts a 
typical genetic search process. Its most 
distinguished feature is the fitness function, EPI 
model, where the GA-ANN integration happens. 
 
GA-ANN model searches the engineering inputs 
that lead to better engineering performance. The 
genetic search starts with an initial population. 
The initial population is comprised of a number 
of individuals. Each individual is a chromosome 
consisting of 25 genes, each of which 
corresponds to an engineering input in Table 1. 
For a given project, the input variables related to 
basic project attributes including general project 
attributes, general owner attributes and general 
designer attributes (refer to Table 2) will be kept 
constant throughout the genetic search; all other 
input variables subject to the changes in the 
actual project execution will be manipulated by 
genetic operations in order to form better 
combinations of the variables. 
 
GA-ANN evaluates all individuals, keeps the 
good ones, reproduces the good ones, and 
sometimes transforms the good ones to make 
even better ones, … until satisfactory 
individuals are produced. First of all, the 
individuals in the initial generation are evaluated 
through the fitness function, EPI model. First, 
Each individual is presented to the 10 trained 
neural networks that predict its 10 corresponding 
engineering performance measures. Second, the 
multiple attribute utility function transforms the 
10 predicted measures into a composite 
engineering performance index, which is the 
fitness function value of the individual. 
 
Then, the initial generation goes through the 
genetic operations: selection, reproduction, 
crossover and mutation. First, the individuals 
with higher fitness function values get selected 
and the worse ones eliminated, which means that 
the engineering inputs that create better 
engineering performance are kept. Second, the 
selected ones are reproduced and crossovered. 
Lastly, a certain percentage of the individuals go 
through the mutation process which transforms a 
certain number of genes of the individuals. The 
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mutation process might make the mutated 
individuals better or worse. Thus, the second 
generation is formed. 
 
The second generation also goes through fitness 
evaluation, selection, reproduction, crossover 
and mutation. Some individuals better than those 
in the second generation are assembled and 
come into the third generation. The general trend 
is that the individuals become better and better 
from generation to generation. In other words, 
the level of engineering performance becomes 
higher and higher. 
 
The genetic search process keeps going on until 
a certain termination criterion is met. Usually 
the termination criterion can be a desired fitness 
value, the maximum number of generations, or 
computation time. By the time the process stops, 
one or more sets of engineering inputs will be 
identified as the ones that lead to an engineering 
performance level close or equal to the desired 
level. 
 
4.3 Relationships Between the Models 
 
EPI model establishes the relationships between 
the engineering inputs and engineering 
performance measures and aggregates the 
measures into a composite index to indicate the 
level of engineering performance. GA-ANN 
model does the genetic search for better 
engineering performance using EPI model as the 
fitness function while EPI model provides 
engineering performance prediction for given 
engineering inputs. 
 
5. ANTICIPATED APPLICATIONS OF 
THE MODELS 
 
For past projects, GA-ANN model and EPI 
model work together to search better 
engineering performance and the corresponding 
engineering inputs. Then, the actual engineering 
inputs can be compared with the those searched 
by GA-ANN model and the comparison might 
be able to indicate what could have been done to 
achieve better engineering performance. 
 
For future projects, GA-ANN model looks for 
the possible better engineering inputs and 

outputs for the project. These anticipated project 
inputs and outputs might act as the guideline and 
goal for the actual project execution. 
 
6. DATA ANALYSIS 
 
The project data for validating the proposed 
models are being collected by the authors. The 
result of data analysis is expected to be 
presented at the conference.   
 
7. CONCLUSIONS 
 
This paper proposed a systematic approach to 
improving the practice of engineering 
performance. The fundamental idea is to find the 
possible best practice of engineering activities 
for a given project. To pursue this, genetic 
algorithms and artificial neural networks are 
employed to build the models. Artificial neural 
networks provide the ability to establish the 
relationships between engineering activity inputs 
and engineering performance outputs, and 
genetic algorithms serve as a search engine to 
find the possible best engineering practice based 
on the relationships between engineering inputs 
and outputs identified through artificial neural 
networks. 
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Table 1 Engineering Input Variables 
Category Variables 

Project size (total installation cost) 
Contract type 
Relative size of project compared to projects of the same industry type 
Relative level of complexity 
Site conditions 

General project attributes 

Legal and environmental conditions 
Owner profile and participation 
Newness of process technology to owner 

General owner attributes 

Owner previous experience with designer 
Split engineering practices 
Designer qualifications and capacity 

General designer attributes 

Newness of process technology to designer 
Design schedule Project schedule 
Design-construction overlap 
Completeness of scope definition 
Completeness of objectives and priorities 
Completeness of basic design data 
Quality of constructor input and constructability 

Project information inputs 

Quality of vendor data 
Use of 3D CAD modeling 
Use of Integrated Databases (IDB) 

Level of automation 

Use of Electronic Data Interchange (EDI) 
Percent TIC scope changes 
Change management procedure 

Project changes 

Change communication system 
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Table 2 Engineering Output Variables (Engineering Measures) 
Category Variables 

% design rework 
Design document release commitment 
% detailed design schedule delay 

Detailed design value 

% detailed design cost overrun 
Fabrication and construction % fabrication and construction schedule delay due to design deficiencies 
value % fabrication and construction cost overrun due to design deficiencies 
 % construction hours for design problem solving and field design 
 % estimated dollar savings due to constructability 
Start-up and commissioning % start-up schedule delay due to design deficiencies 
value % start-up cost overrun due to design deficiencies 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. GA-ANN Model 
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Figure 2. EPI Model -- Breakdown 
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